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Abstract

A numerical study of natural convection heat and mass transfer along a vertical wavy surface has been performed.

The wavy surface is maintained at uniform wall temperature and constant wall concentration. A simple coordinate

transformation is employed to transform the complex wavy surface to a flat plate. A marching finite-difference scheme

is used for the analysis. The buoyancy ratio N , amplitude–wavelength ratio a, and Schmidt number Sc are important
parameters for this problem. The numerical results, including the developments of skin-friction coefficient, velocity,

temperature, concentration, Nusselt number as well as Sherwood number along the wavy surfaces are presented. The

effects of the buoyancy ratio N and the dimensionless amplitude of wavy surface on the local Nusselt number and the
local Sherwood number have been examined in detail.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

There are many physical processes in which buoy-

ancy forces resulting from combined thermal and species

diffusion play an important role in the convective

transfer of heat and mass. The engineering applications

include the chemical distillatory processes, formation

and dispersion of fog, design of heat exchangers, chan-

nel type solar energy collectors, and thermo-protection

systems. Therefore, the characteristics of natural con-

vection heat and mass transfer are relatively important.

Convection flows driven by temperature and concen-

tration differences have been studied extensively in the

past. Bejan and Khair [1] used Darcy�s law to study the
features of natural convection boundary layer flow dri-

ven by temperature and concentration gradients in a

porous medium. Chang et al. [2] investigated the com-

bined buoyancy effects of thermal and mass diffusion on

the natural convection flows in a vertical open tube. Yan

and Lin [3] studied combined heat and mass transfer

natural convection between vertical parallel plates with

film evaporation.

Previous studies of natural convection heat and mass

transfer have focused mainly on a flat plate or regular

ducts. Somers [4], Mather et al. [5], and Gill et al. [6]

analyzed the same problem of simultaneous heat trans-

fer and binary diffusion on a vertical surface with dif-

ferent situations or different numerical schemes.

Bottemanne [7] has considered simultaneous heat and

mass transfer by free convection along a vertical flat

plate only for steady state theoretical solutions with

Pr ¼ 0:71 and Sc ¼ 0:63. Callahan and Marner [8]

studied the free convection with mass transfer on a

vertical flat plate with Pr ¼ 1 and a realistic range of
Schmidt number. The effects of mass diffusion on nat-

ural convection flows along a flat plate with different

inclination have been studied rather extensively. Geb-

hart and Pera [9], Chen and Yuh [10] and Srinivasan and

Angirasa [11] investigated the effects of inclination of flat

plate on the combined heat and mass transfer in natural

convection. Jang and Chang [12] studied the problem of

buoyancy-induced inclined boundary flows in a porous

medium resulting from combined heat and mass buoy-

ancy effects. However, studies on the effects of complex
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geometries on the natural convection heat and mass

transfer are still required in this area. Few studies have

considered the effects of complex geometries on thermal

convection in micropolar fluids, including the flows

along a convex surface. Wang and Kleinstreuer [13] in-

vestigated the thermal convection on micropolar fluids

passing a convex with suction/injection. Yih [14] studied

the heat and mass transfer characteristic in natural

convection flow over a truncated cone subjected to

uniform wall temperature and concentration or uniform

heat and mass flux embedded in porous media. Wu et al.

[15] developed a numerical model to study the effec-

tiveness of dehydration media for wedge-shaped surface

with mass and heat transfer.

It is necessary to study the heat and mass transfer

from an irregular surface because irregular surfaces are

often present in many applications. It is often encoun-

tered in heat transfer devices to enhance heat transfer.

For examples, flat-plate solar collectors and flat-plate

condensers in refrigerators. The natural convection heat

transfer from an isothermal vertical wavy surface was

first studied by Yao [16–18] and using an extended

Prantdl�s transposition theorem and a finite-difference

scheme. He proposed a simple transformation to study

the natural convection heat transfer from isothermal

vertical wavy surfaces, such as sinusoidal surface. Chiu

and Chou [19] studied the natural convection heat

transfer along a vertical wavy surface in micropolar

fluids. Chen and Wang [20,21] analyzed transient forced

and free convection along a wavy surface in microfluids.

Cheng [22,23] has investigated coupled heat and mass

transfer by natural convection flow along a wavy coni-

cal surface and vertical wavy surface in a porous me-

dium.

Most of the previous studies about vertical wavy

surfaces are concerned with microfluids or porous me-

dia. Natural convection heat and mass transfer in

Newtonian fluid along a vertical wavy surface has not

been well investigated. The objective of this study is to

examine numerically the natural convection heat and

mass transfer along a vertical wavy surface by using

Prandtl�s transposition theorem and to investigate the

effect of irregular surfaces on the characteristics of nat-

ural convection heat and mass transfer. The numerical

results, including the developments of friction factor,

velocity, temperature, concentration, Nusselt number as

well as Sherwood number along the wavy surface are

presented. The effects of the buoyancy ratio N and the

dimensionless amplitude of wavy surface on the local

Nusselt number and the local Sherwood number are also

studied in detail.

2. Analysis

Consider a semi-infinite vertical wavy plate as shown

schematically in Fig. 1. The wavy surface of the plate

can be described by

Nomenclature

a amplitude of the wavy surface (m)

c concentration

C dimensionless concentration

Cf skin-friction coefficient

Cp specific heat of fluid at constant pressure

(kJ kg�1 K�1)

D mass diffusivity (m2 s�1)

g gravitational acceleration (m s�2)

k conductivity (Wm�1 K�1)

L wavelength of the wavy surface (m)

N buoyancy ratio, Eq. (6)

Nu Nusselt number

P pressure (Nm�2)

Pr Prandtl number

Sc Schmidt number

Sh Sherwood number

T temperature (K)

U , V dimensionless velocityeUU characteristic velocity

u, v velocity components in the x and y direc-
tions, respectively (m s�1)

X , Y dimensionless coordinate system

x, y coordinate system (m)

Greek symbols

a amplitude–wavelength ratio, a=L
bT thermal expansion coefficient

bc concentration expansion coefficient

r dimensionless coordinate of the wavy sur-

face

r coordinate of the wavy surface, Eq. (1)

l viscosity (kgm�1 s�1)

q fluid density (kgm�3)

h dimensionless temperature

Superscript

� non-dimensional quantity

Subscripts

1 conditions far away from the surface

c caused by concentration

m mean value

T caused by temperature

w surface condition

x local value
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y ¼ rðxÞ ¼ a sinð2px=LÞ

where a is the amplitude of the wavy surface and L is the
characteristic wavelength of the wavy surface. The ori-

gin of the coordinate system is placed at the leading edge

of the vertical surface. The surface is kept at uniform

temperature Tw and uniform concentration cw. The u
and v are the velocity components in the x and y direc-
tions, respectively. The fluid oncoming to the surface has

a constant temperature T1 and concentration c1. The
flow is assumed to be steady and the thermal properties

of the mixture are assumed to be constant except for the

density variation in the buoyancy term of the transverse-

momentum equation.

The governing equations for a steady, laminar, and

incompressible flow along a semi-infinite vertical wavy

surface with Boussinesq approximation may be written

as:

Continuity equation

ou
ox

þ ov
oy

¼ 0 ð1Þ

Momentum equation

q u
ou
ox

�
þ v

ou
oy

�
¼ � oP

ox
þ l

o2u
ox2

�
þ o2u

oy2

�
þ qgbTðT � T1Þ þ qgbcðc� c1Þ ð2Þ

q u
ov
ox

�
þ v

ov
oy

�
¼ � oP

oy
þ l

o2v
ox2

�
þ o2v
oy2

�
ð3Þ

Energy equation

qCp u
oT
ox

�
þ v

oT
oy

�
¼ k

o2T
ox2

�
þ o2T

oy2

�
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Concentration equation

u
oc
ox

þ v
oc
oy

¼ D
o2c
ox2

�
þ o2c
oy2

�
ð5Þ

Moreover, the appropriate boundary conditions for the

problem are: at the wavy surface, u ¼ 0, v ¼ 0, T ¼ Tw,
c ¼ cw; matching with the quiescent free stream, u ¼ 0,
v ¼ 0, T ¼ T1, c ¼ c1.
In non-dimensionalizing the governing equations, the

following dimensionless variables were introduced

x� ¼ x
L
; y� ¼ y � r

L
Gr1=4; u� ¼ qL

lGr1=2
u;

v� ¼ qL
lGr1=4

ðv� r0uÞ; P � ¼ qL2

l2Gr
P ;

Gr ¼ gbTðTw � T1Þq2L3
l2

; Pr ¼ lCp

K
; Sc ¼ l

qD
;

h ¼ T � T1
Tw � T1

; C ¼ c� c1
cw � c1

; N ¼ bcðcw � c1Þ
bTðTw � T1Þ ;

r ¼ r
L

ð6Þ

It is noted that when N is equal to zero, there is no

mass diffusion body force and the problem reduces to

pure heat convection; when N becomes infinite, there is

no thermal diffusion.

After ignoring the small order terms in Gr, the di-
mensionless governing equations become

ou�

ox�
þ ov�

oy�
¼ 0 ð7Þ

u�
ou�

ox�
þ v�

ou�

oy�
¼ � oP �

ox�
þ r0 oP

�
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oy�2
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2
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�

ox�
� ð1þ r02Þ oP

�

oy�
Gr1=4 ð9Þ

u�
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ox�
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¼ 1

Pr
ð1þ r02Þ o

2h
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u�
oC
ox�
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¼ 1

Sc
ð1þ r02Þ o

2C
oy�2

ð11Þ

It is worth noting that the r0 and r00 indicate the first

and second differentiations of r with respect to x. Eq. (8)
shows that when N < 0, the mass diffusion buoyancy
forces oppose those of thermal diffusion, and when

N > 0, the mass diffusion buoyancy forces aid those of
thermal diffusion.

L

y

x

Tw

Cw

gT∞ ∞ , C

)L/x2sin(a)x( π=σ

0

Fig. 1. Schematic diagram of the physical system.
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For the current problem, the pressure gradient

oP �=ox� is zero. Therefore, eliminating oP �=oy� in Eqs.
(8) and (9) resulting the following equation:

u�
ou�

ox�
þ v�

ou�

oy�
¼ 1

1þ r02 ðh þ NC � u�
2

r0r00Þ

þ ð1þ r02Þ o
2u�

oy�2
ð12Þ

Use the following transformation in order to remove

the singularity at the leading edge [16]:

X ¼ x�; Y ¼ y�

ð4x�Þ1=4
; U ¼ u�

ð4x�Þ1=2
; V ¼ ð4x�Þ1=4v�

ð13Þ

then Eqs. (7) and (10)–(12) in the parabolic coordinates

ðX ; Y Þ become

2U þ 4X oU
oX

� Y
oU
oY

þ oV
oY

¼ 0 ð14Þ

4XU
oU
oX

þ ðV � UY Þ oU
oY

þ 2

�
þ 4Xr0r00

1þ r02

�
U 2

¼ 1

1þ r02 ðh þ NCÞ þ ð1þ r02Þ o
2U
oY 2

ð15Þ

4XU
oh
oX

þ ðV � UY Þ oh
oY

¼ 1

Pr
ð1þ r02Þ o

2h
oY 2

ð16Þ

4XU
oC
oX

þ ðV � UY Þ oC
oY
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Sc
ð1þ r02Þ o

2C
oY 2

ð17Þ

The corresponding boundary conditions are

Y ¼ 0; U ¼ V ¼ 0; h ¼ 1; C ¼ 1 ð18Þ

Y ! 1; U ! 0; h ! 0; C ! 0 ð19Þ

After obtaining the velocity, temperature and con-

centration fields along the wavy surface, the computa-

tions of the local friction coefficient, Nusselt number,

and Sherwood number are of practical interest. The lo-

cal heat and mass transfer rates are large when the

normal velocity is approaching the surface; they are

small when the convective stream moves away from the

surface. The heat and mass transfer mechanism along a

wavy surface is different from that along a flat surface,

and is modified by the fluid motion normal to the sur-

face.

The local Nusselt number and Sherwood number are

defined respectively as

Nux ¼
hx
k
¼ � Gr

4X

� �1=4
ð1þ r02Þ1=2 oh

oY

� �
Y¼0

ð20Þ

Shx ¼
hDx
D

¼ � Gr
4X

� �1=4
ð1þ r02Þ1=2 oC

oY

� �
Y¼0

ð21Þ

The shearing stress on the wavy surface is

sw ¼ l
ou
oy

��
þ ov
ox

��
y¼0

ð22Þ

Since the local skin-friction coefficient Cfx is defined by

Cfx ¼
2sw
q eUU 2

ð23Þ

where eUU ¼ ðlGr1=2Þ=ðqLÞ is a characteristic velocity.
Substituting Eq. (22) into Eq. (23) in terms of the non-

dimensional quantities, we have

Cfx ¼
4X
Gr

� �1=4
2ð1� r02Þ oU

oY

� �
Y¼0

ð24Þ

3. Numerical approach

In this work, a marching finite-difference scheme was

used to solve the coupled governing equations for U , V ,
h and C. In the transverse direction (Y ), 251 non-uni-
form grid points were employed. Some of the calcula-

tions were tested using 501 grid points in the Y direction,
but no significant improvement over the 251 grid points

was found. Additionally, there are 401 grid points in the

marching direction. In the program test, a finer axial

step size was tried and found to give acceptable accu-

racy. In writing the finite-difference equations, a fully

implicit numerical scheme in which the axial convection

is approximated by the upstream difference and the

transverse convection and diffusion terms by the central

difference is used to transform the governing equations

into the finite-difference equations. Each of the finite-

difference equations forms a tridiagonal matrix equa-

tion, which can be efficiently solved by the Thomas

algorithm [24]. During the program test, the convergent

criteria for the relative errors of the variables, U , V , h
and C, between two iterations are less 10�5. To further
check the adequacy of the numerical scheme used in this

work, the results for the limiting case of natural con-

vection heat transfer in a wavy surface were first ob-

tained. Excellent agreement between the present

predictions and those of Yao [16] was found. Through

these program tests, it was found that the present nu-

merical method is suitable for this study.

4. Results and discussion

In the present study, numerical calculations are per-

formed for the wavy surface described by rðxÞ ¼
a sinð2px=LÞ or dimensionless rðX Þ ¼ a sinð2pX Þ for

amplitude–wavelength ratio of 0–0.1. In this work, the

air mixture with various mass species is considered.

Additionally, only the results of Schmidt number rang-

ing from 0.2 to 2 are presented. The velocity distribution

along X -axis of this study is presented in Fig. 2. The
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temperature and concentration distributions are ob-

tained and shown in Figs. 3 and 4 respectively as well. In

these figures, there are three different cases for numerical

calculation, where (a) represents the typical case, and the

values of a, N , and Sc are 0.05, 2, and 1.3, respectively;
(b) represents the case of a ¼ 0:1, N ¼ 2, and Sc ¼ 1:3;
and (c) represents the case of a ¼ 0:1, N ¼ 4, Sc ¼ 1:3.
Because the leading edge of the wavy surface is a sin-

gular point, the results near this particular position are

not presented in these figures.

The nodes of the wavy surface are at X ¼ 0:5, 1, 1.5,
2, etc. and while X ¼ 0:75, 1.75, 2.75 and so on are the
troughs, and X ¼ 0:25, 1.25, 2.25 etc. are the crests. It is
observed that the developments of velocity, temperature

and concentration profiles change periodically along the

X -axis in Figs. 2–4. It is interesting to see that the
wavelengths of wavy velocity, temperature and concen-

tration distributions are the same and are exactly the

half wavelength of the wavy surface. That is, a maxi-

mum occurs on the nodes of the wavy surface. From

Eqs. (14)–(17), the coefficient of higher order differential

terms contains r02. Since r is a periodical function with
wavelength of l, r02 is also a periodical function with

wavelength of l=2. Therefore, the solution of Eqs. (14)–
(17) becomes a periodical function with wavelength of

l=2. This could be used to explain the physical phe-
nomena mentioned above.

In Fig. 2, the hydrodynamic boundary layer and the

maximum velocity value are about the same and there

occurs a periodical phenomenon for these three cases. It

is obvious that the boundary layers are thicker near the

nodes than those near the crests and the troughs. But the

maximum velocity in the crests or the troughs is larger

than that on the nodes. There is a greater velocity fluc-

tuation for a higher amplitude–wavelength ratio a by
comparing cases (a) and (b). When the buoyancy ratio N
increases, the maximum velocity increases by comparing

cases (b) and (c). Obviously, the contribution of mass

diffusion to the buoyancy force increases significantly

the maximum velocity.

In Figs. 3 and 4, the developments of temperature

and concentration profiles are similar. This is due to the

fact that the temperature and concentration governing

equations are similar and the only difference between

them is the Prantdl number Pr of the energy equation
from the Schmidt number Sc of the species equation.
Comparison of Figs. 3 and 4 indicates that the thermal

boundary layers are thicker than those of concentration

for these three cases. This is because that the Schmidt

Fig. 2. The velocity contours: (a) a ¼ 0:05, N ¼ 2, Sc ¼ 1:3; (b)
a ¼ 0:1, N ¼ 2, Sc ¼ 1:3; (c) a ¼ 0:1, N ¼ 4, Sc ¼ 1:3.

Fig. 3. The temperature contours: (a) a ¼ 0:05, N ¼ 2,
Sc ¼ 1:3; (b) a ¼ 0:1, N ¼ 2, Sc ¼ 1:3; (c) a ¼ 0:1, N ¼ 4,
Sc ¼ 1:3.
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number Sc (¼ 1.3) is greater than Prandtl number Pr
(¼ 0.7). In Fig. 3, the thermal boundary layer is thicker
in case (b) comparing with case (c). The decrease of

thermal boundary layer is caused by increasing the

buoyancy ratio N .
Fig. 5 shows the geometric effect on local skin-fric-

tion coefficient Cfx, local Nusselt number Nux, and local
Sherwood number Shx. It is observed that when the
amplitude–wavelength ratio a increases for a fixed lo-
cation of X -axis, the skin-friction coefficient, local

Nusselt number and local Sherwood number decreases

with greater fluctuating amplitudes. Therefore, the heat

and mass transfer rates decrease as the amplitude–

wavelength ratio increases. But the skin-friction coeffi-

cients on the crests and the troughs keep the same value

as that on a flat plate, i.e., a ¼ 0. It can be understood
that the definition of skin-friction coefficient is the ve-

locity derivative on the surface, and the derivative on the

crests and the troughs is equal to zero which is the same

as that of a flat plate. Therefore, the skin-friction coef-

ficients on the crests and the troughs are the same as that

of a flat plate. When the amplitude–wavelength ratio is

kept fixed, the skin-friction coefficient has a minimum

on the nodes (e.g., X ¼ 0:5, 1, 1.5, 2, etc.). The same
phenomenon occurs for the local Nusselt number and

the local Sherwood number.

Fig. 6 gives the effects of buoyancy ratio N on the

local skin-friction coefficient, local Nusselt number and

local Sherwood number respectively along the X -axis. It
Fig. 4. The concentration contours: (a) a ¼ 0:05, N ¼ 2, Sc ¼
1:3; (b) a ¼ 0:1, N ¼ 2, Sc ¼ 1:3; (c) a ¼ 0:05, N ¼ 4, Sc ¼ 1:3.

Fig. 5. Effects of amplitude–wavelength ratio a on the axial distributions of (a) skin-friction coefficient; (b) Nusselt number; (c)
Sherwood number.
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is obvious that when the buoyancy ratio N increases, the
skin-friction coefficient, local Nusselt number, and local

Sherwood number increase at a given X position. It

means that the buoyancy ratio enhances the heat and

mass transfer of the wavy surface. It is also worth noting

that the maximum values of Cfx, Nux and Shx occur on

Fig. 6. Effects of buoyancy ratio N on the axial distributions of (a) skin-friction coefficient; (b) Nusselt number; (c) Sherwood number.

Fig. 7. Effects of Schmidt number Sc on the axial distributions of (a) skin-friction coefficient; (b) Nusselt number; (c) Sherwood
number.
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the nodes of the wavy surface while the minimum values

occur on the crests and the troughs.

Fig. 7 illustrates the influence of Schmidt number Sc
on the local skin-friction coefficient, local Nusselt

number, and local Sherwood number. It is seen that the

skin-friction coefficient and local Nusselt number de-

crease and local Sherwood number increases as Schmidt

number is raised. That is, the mass transfer rate in-

creases and the heat transfer rate decreases with in-

creasing Schmidt number. This is due to the fact that a

large Schmidt number is associated with a thinner con-

centration boundary layer relative to the thermal

boundary layer thickness, thereby resulting in a larger

concentration gradient at the wall, which in turn en-

hances the mass transfer.

5. Conclusions

The problem of natural convection heat and mass

transfer along a wavy surface has been analyzed. The

effects of amplitude–wavelength ratio a, buoyancy ratio
N , and Schmidt number Sc on momentum and heat and
mass transfer have been studied in detail. Brief sum-

maries of the major results are listed in the following:

1. The properties of the flow field change periodically,

and the wavelength of the properties is half of the

wavelength of the wavy surface.

2. The higher amplitude–wavelength ratio a increases
the fluctuation of velocity, temperature and concen-

tration fields. However, the local skin-friction Cfx,
Nusselt number Nux and Sherwood number Shx are
smaller for larger amplitude–wavelength ratios.

3. The skin-friction coefficient, Nusselt number, and

Sherwood number increase with an increase in the

buoyancy ratio N . This implies that the heat and
mass transfer rates increase with the buoyancy ratio.

4. Increasing Schmidt number Sc decreases the skin-fric-
tion coefficient and local Nusselt number but in-

creases local Sherwood number. In other words, the

heat transfer rate is reduced while the mass transfer

rate is enhanced as the Schmidt number is raised.
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